Math 250A Lecture 21 Notes

Daniel Raban

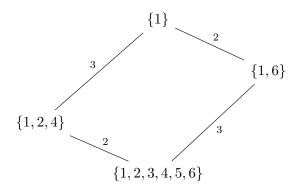
November 9, 2017

The Fundamental Theorem of Galois Theory 1

Proof and an example 1.1

Here is the example of the fundamental theorem that we started last time:

Example 1.1. Last time we had $L = \mathbb{Q}[\zeta]$, where $\zeta = e^{2\pi i/7}$. We wanted to find all subfields of L. This had the Galois group $(\mathbb{Z}/7\mathbb{Z})^*$, which has subgroups



We should have 2 intermediate fields between \mathbb{Q} and $\mathbb{Q}(\zeta)$, of degree 2 and 3. What are they?

Let's find the degree 2 field. The elements are fixed by $H = \{1, 2, 4\}$. One fixed element is $a = \zeta + \zeta^2 + \zeta^4$, which is not in Q. What is a? We must find a quadratic equation with root a.

$$a^{2} = \zeta + \zeta^{2} + 2\zeta^{3} + \zeta^{4} + 2\zeta^{5} + 2\zeta^{6}$$
$$a^{2} + a = 2)\zeta + \zeta^{2} + \dots + \zeta^{6}$$

So $a^2 + a + 2 = 0$, which makes $a = \frac{-1 + \sqrt{-7}}{2}$. So the degree 2 field is $\mathbb{Q}[a] = \mathbb{Q}[\sqrt{-7}]$. Let's find the degree 3 subfield. Let $J = \{1, 6\}$. Look for an invariant element; we choose $\zeta + \zeta^6 = \zeta + \zeta^{-1}$. Note that $\zeta = e^{2\pi i/7} = \cos(2\pi/7) + i\sin(2\pi/7)$. So $\zeta + \zeta^{-1} = 2\cos(2\pi/7)$.

Alternatively, we can find the irreducible equation it satisfies. We have

$$(\zeta + \zeta^{-1})^3 = \zeta^3 + 3\zeta + 3\zeta^{-1} + \zeta^{-3}.$$

 $(\zeta + \zeta^{-1})^2 = \zeta^2 + 2 + \zeta^{-2}.$

Since $\zeta^3 + \zeta^2 + \zeta + \cdots + \zeta^{-3} = 0$, we have that $\zeta - \zeta^{-1}$ is a root of $x^3 + x^2 - 2x - 1$. The 3 roots of this polynomial are $2\cos(2\pi/7)$, $2\cos(4\pi/7)$, and $2\cos(8\pi/7)$.

Theorem 1.1 (Fundamental theorem of Galois theory). Let M/K be a Galois extension with Galois group G. Then there is a correspondence of subextensions L of M with subgroups H of G given by $L \mapsto \text{Gal}(M/L)$. and $H \subseteq G \mapsto M^H$. Moreover, these maps are inverses of each other.

Proof. We want to show that $L = M^{\operatorname{Gal}(M/L)}$. We have $L \subseteq M^{\operatorname{Gal}(M/L)}$, so it is enough to show that they have the same size. We show that they have the same index in M.

Similarly, we have that $H \subseteq \text{Gal}(M : M^H)$, so to show that they are the same, it also suffices to show that they are the same size. So the theorem follows if we show:

- 1. |Gal(M:L)| = [M:L].
- 2. $[M: M^H] = |H|.$

The key point is to recall our lemma from last lecture: if $K \subseteq L$ and $K \subseteq M$, there are at most [L:K] maps $L \to M$ extending the identity map of K.

To prove the first statement, observe that $|\text{Gal}(M/L)| \leq [M : L]$ by the lemma. Now suppose it is strictly less. Look at $K \subseteq L \subseteq M$. Byt the multiplicativity of indices, there are $\langle [L : K][M : L] = [M : K]$ maps from $M \to M$. But since M/K is Galois, there are exactly [M : K] maps $M \to M$, which is a contradiction.

The proof of the second statement is similar, and we leave it as an exercise. \Box

1.2 Applications of the fundamental theorem

1.2.1 Construction of a 17-sided regular polygon

We can use Galois theory to prove the existence of a construction of a 17-sided regular polygon using a ruler and compass.¹

Example 1.2. We want to construct ζ , where $\zeta^{17} = 1$. We have $\frac{\zeta^{17}-1}{\zeta-1} = 0$. Recall that this was an irreducible polynomial of degree 16. The idea is that we can find intermediate fields $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\beta) \subseteq \mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\zeta)$. We can construct degree 2 extensions with a ruler and compass because we can construct square roots with a ruler and compass.

¹Gauss became famous as a teenager by becoming the first to give an explicit construction.

Look at the Galois group $(\mathbb{Z}/17\mathbb{Z})^* \cong \mathbb{Z}/16\mathbb{Z}$. This has subgroups $0 \subseteq \mathbb{Z}/2\mathbb{Z} \subseteq \mathbb{Z}/4\mathbb{Z} \subseteq \mathbb{Z}/8\mathbb{Z} \subseteq \mathbb{Z}/16\mathbb{Z}$, so we can find the desired field extensions. If we want to find out what the fields are, we can proceed as earlier. Explicitly, the subgroups are

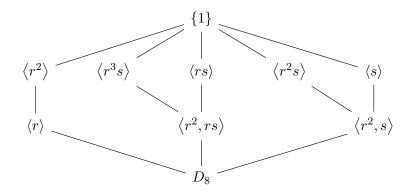
$$\{0\} \subseteq \{1, 16\} \subseteq \{1, 4, 13, 16\} \subseteq \{1, 2, 4, 8, 9, 13, 15, 16\} \subseteq \mathbb{Z}/16\mathbb{Z},$$

so we can find the fixed fields of these subgroups:

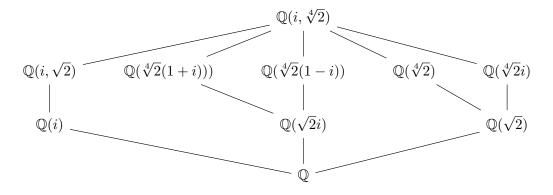
$$\mathbb{Q}(\zeta), \mathbb{Q}(\zeta+\zeta^{1}6), \mathbb{Q}(\zeta+\zeta^{4}+\zeta^{13}+\zeta^{16}), \mathbb{Q}(\zeta^{1}+\zeta^{2}+\zeta^{4}+\cdots).$$

1.2.2 Subextensions of a splitting field

Example 1.3. Let's find all the subextensions of $x^4 - 2$ over \mathbb{Q} . This has the roots $\sqrt[4]{2}$, $\sqrt[4]{2}i$, $-\sqrt[4]{2}$, and $\sqrt[4]{2}i$. We have that $[\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}] = 4$ and $[\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}(\sqrt[4]{2})] = 2$, so the splitting field has degree 8 over \mathbb{Q} . If we draw out the roots in the complex plane, we get the vertices of the square. So the Galois group is the group of symmetries of the square, D_8 . Its subgroups are:



So the subextensions are:



1.3 Extensions corresponding to normal subgroups and factor groups

In the previous example, The 3 subgroups of order 4 and the first subgroup of order 2 are normal. The other four subgroups of order 2 come in conjugate pairs. We can see that the corresponding extensions are normal. This is true in general.

Proposition 1.1. Let $H \subseteq \text{Gal}(L/K)$. Then H is normal iff L^K/K is a normal extension.

Proof. H is normal iff all conjugates of H under G are the same as G. L/K is normal iff all conjugates of L under the Galois group are the same as L.

Suppose L/K is a field extension corresponding to H and is normal. What is the Galois group of L/K? A standard blunder is to think that it is H, which is actually $\operatorname{Gal}(M/L)$. In fact, $\operatorname{Gal}(L/K) = G/H$. If we have $\operatorname{Aut}(M) \to \operatorname{Aut}(L)$, the kernel is everything fixing all elements of L. This is H.

1.4 Finding extensions corresponding to a given group

Proposition 1.2. Let G be a finite group. Then there is a Galois extension L/K with Galois group G.

Proof. First take $G = S_n$, and let $L = \mathbb{Q}(x_1, x_2, \ldots, x_n)$, all rational functions in L variables. Now let $K = L^{S_n}$, the symmetric rational functions. If G is any finite group acting on any field L, then L/L^G is Galois with group G. So L/L^{S_n} is a Galois extension with Galois group S_n . The same works for when G is a subgroup of S_n ; L/L^G has Galois group G. The result follows by Cayley's theorem, that any finite group is a subgroup of some permutation group.

This is very hard if you want a specific field K. The following is still an open problem: "Given a finite group G, is there an extension of \mathbb{Q} with Galois group G?"

Example 1.4. Let $G = \mathbb{Z}/5\mathbb{Z}$ and let $\zeta^{11} = 1$. Notice that $\mathbb{Q}[\zeta]$ has Galois groups $\mathbb{Z}/11\mathbb{Z}$)* $\cong \mathbb{Z}/10\mathbb{Z}$, which has the quotient, $\mathbb{Z}/5\mathbb{Z}$. Explicitly, if we take the field $\mathbb{Q}(\zeta)^{\mathbb{Z}/2\mathbb{Z}}$, then its Galois group is $(\mathbb{Z}/10\mathbb{Z})/(\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/5\mathbb{Z}$.

Example 1.5. Let's find an extension of \mathbb{Q} with Galois group S_5 (order 120). We take the splitting field of $x^5 - 4x + 2$. This is irreducible by Eisenstein's criterion. If you look at the graph, it has exactly 3 real roots (and hence 2 complex roots). The Galois group is a subgroup of S_5 , the permutations of the 5 roots. The Galois group contains a 5-cycle, say (12345), so its order is divisible by 5. The Galois group also contains a transposition (complex conjugation). A 5 cycle and a transposition generate S_5 (exercise). So the Galois group of this splitting field is S_5 .

This example generalizes into the following result:

Proposition 1.3. If p is prime , we can find an extension L/\mathbb{Q} with Galois group S_p .

Corollary 1.1. If G is finite, we can find extiensions L/K of \mathbb{Q} with $\operatorname{Gal}(L/K) = G$.

Proof. Let L be the extension with $\operatorname{Gal}(L/\mathbb{Q}) = S_p$ for some large p. Take $G \subseteq S_p$, and let $K = L^G$.